Digital Holography

Wm. Randall Babbitt Professor of Physics and Director of Spectrum Lab Montana State University

> CLRC 2022 Tutorial June 26, 2022

CLRC Tutorial-Babbitt

1

Outline of Tutorial

- Coherent Lidar
- Digital Holography
 - Holography
 - Interference
 - Image Plane DH
 - Pupil plane DH
 - Optical wave propagation
 - Image Recovery Post-Focusing
 - DH Requirements
 - Signal to Noise
 - Depth of Field

CLRC Tutorial-Babbitt

CLRC Tutorial-Babbitt

DH - Requirements	
• Stable laser:	
Single Frequency	
Coherence length greater than object-reference difference	
Wavelength that matches system requirements	
Spatial stability	
• Path difference constant to better than $\lambda/4$ during exposure	
• The faster the exposure, the better.	
Post-processing	
Preferred: Real-time camera capture and post-processing	
 -Fast data link with camera followed by fast CPU, FPGA, or GPU 	
Local Oscillator/Reference Beam	
High spatial coherence	
Preferred: plane wave	
• Spherical wave: just multiply in post-processing by it's quadratic wavefront	
• Angled w.r.t. Object beam (unless implementing phase shifted DH)	
• Camera	
Operation at system wavelength	
Preferred: Fast frame rate	
Number of pixels: Trade-off between resolution and frame rate	
• Pixel size: Smaller size => higher LO angles, but less object resolution (w/ fixed # of pixels).	
CLRC Tutorial-Babbitt	

DH Signal-to-Noise • After masking and inverse Fourier transforming, we obtain estimate of complex field for reconstructed image $E_{Reconstruct} \approx E_{L0}^* U \propto \sqrt{\overline{m}_{L0} \overline{m}_s}$ $SNR = \frac{\sqrt{\overline{m}_{L0}}\sqrt{\overline{m}_s}}{\sqrt{\overline{m}_{L0}} + \sqrt{\overline{m}_s} + \sigma_N}$ • If $\overline{m}_{L0} \gg \overline{m}_s$ $SNR = \frac{\sqrt{\overline{m}_{L0}}\sqrt{\overline{m}_s}}{\sqrt{\overline{m}_{L0}} + \sigma_N}$ Typically set LO power to produce $\overline{m}_{L0} < \approx$ well depth • If the number of photoelectrons generated from LO field is much greater than camera readout noise, $\sqrt{\overline{m}_{L0}} > \sigma_N$ $SNR \approx \sqrt{\overline{m}_s}$ • The system SNR is then limited by the shot noise of the signal

CLRC Tutorial-Babbitt

- MSU faculty and staff serve on the MPIA Board of Directors
- MSU and MPIA collaborate continuously to grow and sustain relationships in Montana and world-wide CLRC Tutorial-Babbitt

Spectrum Lab Overview

History

- Montana State University Research Center since 1999
- Research Expenditures/Assets
 - >\$1M per year in research expenditures
 - >>\$2M of accumulated equipment for optics and photonics research
- Research Spin-offs
 - Four successful (25-75 employees, >>\$1M annual revenue) direct and indirect "research spin off" companies • S2 Corporation, Bridger Photonics, Blackmore Sensors/Aurora, Montana Instruments

Spectrum Lab's Mission

- Develop and help commercialize Montana grown photonic technologies.
- Transfer developed technologies to Montana companies.
- Provide enhanced educational and employment opportunities for Montana undergraduate and graduate students.

Expertise

- Applied Research and Development: Spatial-Spectral Holography, Microwave photonics, Precision Lidar, Coherent Imaging, Laser Development
- Interdisciplinary Research: Students/Collaborators in Optics and Photonics, Physics, Material Science, Electrical and Computer Engineering, and Mechanical Engineering
- IP generation and protection => Fostering research spin-offs
- · Educating students for careers in optics and photonics industry.
- Controlled unclassified (CUI) research facility. Personnel at secret and higher.
 CLRC Tutorial-Babbitt

Recent Spectrum Lab Projects Spectrum LAB **Coherent Lidar and Imaging** • - Stable, Linearized Optical Chirps - Range-Resolved Digital Holographic Imaging (See Thursday talk by Matt Goodman) Polarimetric Digital Holography - Imaging through Turbulence and Fog (See Thursday talk by Corey Pearson) - Temporal Heterodyne Range-Resolved Digital Holography (See Monday Poster by Cole Hammond) **Quantum Networks** • - Quantum information transfer in free space and through multi-core fibers - Materials for quantum memories and sources **Spatial-Spectral Holographic Microwave Signal Processors** • - Microwave Photonics » Extremely broadband, high resolution spectrum monitoring and geolocation 0-110 GHZ, 40 GHz IBW, sub-MHz resolution, >1 KHz frame rates, >60 dB SFDR » Broadband, high SFDR analog photonics links - Real-Time High Bandwidth Correlator » Broadband "noise" radar and geolocation » Massively parallel cyclostationary signal processing CLRC Tutorial-Babbitt 35