Experimental airborne four channel cw-Laser-Doppler-Anemometer for flight instrumentation

P. Mahnke, M. Damm and O. Kliebisch

German Aerospace Center (DLR)
Institute of Technical Physics,
Stuttgart, Germany
Towards optical air data sensors

Optical measurement of...
True air-speed, angle-of-attack, angle-of-sideslip
static pressure, static temperature

Increased flight safety
Fuselage-flush mounting possible
Intrinsic self diagnostics and measurement uncertainties
Direct measurement of the wind vector

Reduced calibrational effort
Self-referenced, calibration-free techniques
Probeless remote-sensing outside the aircraft boundary layer
System Layout

1550 nm
4 x 1 W MOPA System
80 MHz
Er-DFB Laser
AOF
+1
Opt. Switch

Interferometers

RX/TX Channels

LDA Signal

16 GBit/s
Full-dump channel
< 150 MBit/s
Preprocessed data

Central measurement and control system
(x86)

Python Client
Storage

Command, Control, Process
USB
HID
GigE
PCIe

16 GBit/s
Full-dump channel
< 150 MBit/s
Preprocessed data

Xilinx Zynq 7100 System-on-Chip
PLL

ADC

LVDS

Event detection

2048-FFT

Trigger

Delta T

2048-FFT Interleaving

DDRAM

Linux IIO Daemon

PCIe

GigE

Switch

AD9467
250 MS/s, 16 Bit

AD9517
1.6 GHz VCO

High-speed averager (1024x)
Principle of spectral triggering

Schematic with simulated signal

Due to the real temporal signal, half of the complex spectrum holds the full spectral and temporal information!

Real spectra with non-trivial trigger function

An interleaved complex spectral stream holds the full temporal information
LDA Transceiver

- Measurement distances: 500 mm, 1000 mm
- 4” windows with IBS-AR-coating
- 4” aspheric lenses for imaging of the fiber end in the ratio 1:2 and 1:4
- 15° elevation angle
- FC/APC fiber to the LDA-Rack
- PTC-Heaters and dry air to avoid icing of the windows
Campaign planning

<table>
<thead>
<tr>
<th>Parameter under evaluation</th>
<th>Flight situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of attack</td>
<td>Different flight speeds at constant height</td>
</tr>
<tr>
<td>Angle of side slip</td>
<td>Usually in curves or during landing, but can be controlled by the pilots</td>
</tr>
<tr>
<td>True air speed</td>
<td>Variation of speed</td>
</tr>
</tbody>
</table>
| Signal rate | Aerosol concentration dependent:
 • Flight in different heights
 • Boundary layer
 • Marine Aerosol
 • Urban Aerosol
 • Saharan Dust ... |

Noseboom with five hole probe

LDA transceiver
Data processing & vector reconstruction

- Two real-time FPGA analysis methods were realized for the 250 MS/s ADC
- **Spectral triggering (2048 points FFT)**
 - Averaged continuous spectrogram (4096 points FFT, 1024 averages \(\rightarrow \sim 60\) Hz spectrogram rate)
- 5 different frequency estimators:
 - Simple: maximum, center of mass, quadratic interpolation
 - Extended: **Gaussian-Fit**, linearized Gaussian-Fit
- 1D-Kalman-Filter (still planned—will improve noise)
- **Weighted least-squares for vector reconstruction**

!(Image of a data processing diagram with labeled components and equations)

\[f_i \propto k_i \cdot \nu \]
\[v_i = \frac{\lambda}{2} f_i \]

(Feasible) Weighted least-squares

\[f = (f_1, ..., f_N) \]
\[\Omega = \text{diag}(\sigma_{f_1}, ..., \sigma_{f_N}) \]
\[K = (k_1, ..., k_N) \]
\[v = (K^T \Omega K)^{-1} K^T \Omega f \]
Example: 12.04.2022 – Flight 4
12.04.2022 – Flight 4

- The density of the aerosol during the flight varies
- The aerosol size distribution shows only small variations during the flight
12.04.2022 – Flight 4

- Very clean atmosphere with low particle density
- DWD ceilometer shows Cirrusstratus clouds in approximately 9-10 km
What influences the sensitivity of the spectral trigger? How can it be improved?
12.04.2022 – Flight 4 – Particle rates

• Very low measurement rates outside the clouds of 0.1-1 Hz

• Improvement of the real time processing by optimization of the parameters is possible (red dots) → approximately 1 Hz rate per channel is possible
Conclusion

Flight campaign shows successful LDA operation
- Good correlation with noseboom data, limited by remaining systematic errors
- Robust system performance, independent of mechanical/optical/electrical problems (vibrations, g-shocks, icing, EMI, …)
- Demonstration of self-diagnostics

Way Forward
- 2nd flight campaign with improved FPGA algorithms (Oct 2022)
- Investigation of optimal transceiver divergence → Optimal measurement rate
- Miniaturization of the system
- Combination/Comparison with pulsed coherent wind-lidar systems

Thank you for your attention! Questions!?